Passivating 1T'-MoTe₂ Multilayers at Elevated Temperatures by Encapsulation

Dennis Wang, Kori Smyser, Daniel Rhodes, Luis Balicas, Abhay Pasupathy, and Irving P. Herman*

D. Wang, I. P. Herman Department of Applied Physics and Applied Mathematics Columbia University, New York, NY 10027, USA E-mail: iph1@columbia.edu

K. Smyser Columbia Optics & Quantum Electronics IGERT REU Program Columbia University, New York, NY 10027, USA; Montana State University, Bozeman, MT 59717, USA

D. Rhodes, A. Pasupathy Department of Physics Columbia University, New York, NY 10027, USA

L. Balicas Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310, USA

Supplementary Information

Fig. S1. Optical micrographs of (a) Sample 1, (b) Sample 2, and (c) Sample 3, at room temperature, before heating. Red outlines denoting the thinnest region of the flake, which is probed by Raman scattering, and green outlines denoting the edges of the encapsulating hBN.

Fig. S2. Raman spectra of encapsulated 1T'-MoTe₂ at various temperatures for Sample 1, Run 1 (in air). The green arrow points to position of the strongest initial MoTe₂ peak at room temperature, ~164 cm⁻¹.

Fig. S3. Optical micrographs of Sample 2 during Run 2 at (a) 250 °C and (b) 300 °C. The orange arrows indicate the decomposition of small, uncovered flakes under and to the left of the sample in this temperature range.

Fig. S4. Optical micrographs of Sample 3, Run 2 at (a) 250 °C, (b) 300 °C, and then after
(c) 375 °C and (d) 400 °C, both taken at 100 °C. The gray arrow in (a) indicates where the sample was probed at all temperatures while the purple arrows in (a), (b), and (c) show the decomposition of small, uncovered flakes below and to the left of the sample, which is complete in (d).

Fig. S5. Raman spectra of encapsulated 1T'-MoTe₂ at various temperatures for Sample 2, Run 3 (Ar flow).

Fig. S6. Raman spectra of encapsulated 1T'-MoTe₂ at various temperatures for Sample 3, Run 2 (Ar flow).

Fig. S7. Raman spectra of encapsulated 1T'-MoTe₂ at various temperatures for Sample 3, Run 3 (Ar flow). No MoTe₂ Raman signal was observed at and above 450 °C.

Sample Number	MoTe ₂ Flake Properties
Sample 1 (on first chip)	9 nm (~6 unit cells) covered by 13 nm (~40 layers) hBN
Sample 2 (on second chip)	4-5 nm (~3 unit cells) covered by 10 nm (~35 layers) hBN
Sample 3 (on second chip)	4 nm (~3 unit cells) covered by 5 nm (~16 layers) hBN

Table S2. Experimental conditions for each sample/run.

Sample and Run Number	Gas	Temperature Heating Sequence
Sample 1, Run 1	Ambient air	23, 50, 100, 150, 200, 250, 300, 350, 400, 450°C
Sample 2, Run 2	Ar flow	25, 50, 100, 150, 200, 250, 300, 250, 200, 150, 100, 50, 25°C
Sample 2, Run 3	Ar flow	25, 100, 200, 300, 100, 325, 100, 350, 100,, 600, 100°C
Sample 3, Run 2	Ar flow	25, 50, 100, 150, 200, 250, 300, 250, 200, 150, 100, 50, 25°C
Sample 3, Run 3	Ar flow	24.2, 100, 200, 300, 100, 325, 100, 350, 100, 375, 100, 400, 100, 425°C

Table S3. Fits of frequency vs. temperature for two 1T'-MoTe₂ Raman peaks, for Sample 2

<u>128 cm⁻¹ peak</u>

- Run 2 Up: 132.97 (\pm 0.14) cm⁻¹ [0.013097 (\pm 0.000321) cm⁻¹/K] T(K)
- Run 2 Down: 130.96 (\pm 0.13) cm⁻¹ [0.009780 (\pm 0.000314) cm⁻¹/K] T(K)
- Run 3 Up: 130.31 (\pm 0.12) cm⁻¹ [0.008400 (\pm 0.000190) cm⁻¹/K] T(K)
- Run 3 Up, Calibrated: 131.22 (± 0.12) cm⁻¹ [0.010388 (± 0.000190) cm⁻¹/K] T(K)
- Unweighted Average of [Run 2 Up/Down and Run 3 Up, Calibrated]: 131.72 (± 0.13) cm⁻¹ [0.011088 (± 0.000282) cm⁻¹/K] T(K)
- Weighted Average of [Run 2 Up/Down and Run 3 Up, Calibrated]: 131.59 (± 0.13) cm⁻¹ [0.010916 (± 0.000255) cm⁻¹/K] T(K)
- Direct fit of [Run 2 Up/Down and Run 3 Up, Calibrated]: 131.81 (± 0.08) cm⁻¹ [0.0112249 (± 0.000143) cm⁻¹/K] T(K)

164 cm⁻¹ peak

- Run 2 Up: 166.78 (\pm 0.06) cm⁻¹ [0.010200 (\pm 0.000143) cm⁻¹/K] T(K)
- Run 2 Down: 167.26 (± 0.07) cm⁻¹ [0.011337 (± 0.000148) cm⁻¹/K] T(K)
- Run 3 Up: 166.07 (\pm 0.058) cm⁻¹ [0.009249 (\pm 0.000089) cm⁻¹/K] T(K)
- Run 3 Up, Calibrated: 167.19 (± 0.06) cm⁻¹ [0.011581 (± 0.000089) cm⁻¹/K] T(K)
- Unweighted Average of [Run 2 Up/Down and Run 3 Up, Calibrated]: 167.08 (± 0.06) cm⁻¹ [0.011039 (± 0.000525) cm⁻¹/K] T(K)
- Weighted Average of [Run 2 Up/Down and Run 3 Up, Calibrated]: 167.11 (± 0.06) cm⁻¹ [0.011197 (± 0.000665) cm⁻¹/K] T(K)
- Direct fit of [Run 2 Up/Down and Run 3 Up, Calibrated]: $167.50 (\pm 0.04 \text{ cm}^{-1}) [0.011842 (\pm 0.000066) \text{ cm}^{-1}/\text{K}] \text{ T(K)}$